

Pd-Catalyzed Chemoselective Carbonylation of Aminophenols with Iodoarenes: Alkoxycarbonylation vs Aminocarbonylation

Tongyu Xu and Howard Alper*

Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada

Supporting Information

ABSTRACT: Palladium-catalyzed chemoselective carbonylation of aminophenols with iodoarenes was realized by changing ligand and base. 3- or 4-Aminophenols afforded esters in high yields and selectivities using 1,3-bis-(diphenylphosphino)propane as the ligand and K_2CO_3 as the base, and gave amides in high yields and selectivities using 1,3-bis(diisobutylphosphino)propane as the ligand and DBU as the base. 2-Aminophenol only gave amides in high yields under both conditions.

T ransition metal-catalyzed carbonylation reactions are of value for a variety of organic syntheses.^{1,2} As a relatively inexpensive and readily available C1 source, carbon monoxide can be used to prepare various carbonyl containing products from a broad scope of substrates.^{3,4} Esters and amides are important motifs in natural products, agrochemicals, materials, and pharmaceutical agents.⁵ Coupling reagents (e.g., EDC, HOBt, and CDI) or activated carboxylic acids (e.g., acid chlorides, esters, and amides.⁶ However, the routes can produce stoichiometric amounts of waste, which increases the cost of commercial processes. In this respect, the atom-efficient palladium-catalyzed carbonylation of aromatic halides has been investigated extensively for the synthesis of esters and amides.⁷

The carbonylation of aniline and phenol derivatives has also been investigated extensively for the preparation of the corresponding amides and esters.^{1,4} These reactions may proceed via (i) catalyst generation, (ii) oxidative addition, (iii) CO coordination, (iv) carbonyl insertion through ligand migration, (v) nucleophilic attack, and (vi) product release (Scheme 1).⁸ Molecules containing both hydroxyl and amino functionalities are common in drug intermediates and natural products.⁹ The question arises as to the pathway for the palladium-catalyzed carbonylation of aminophenols (eq 1). It is conceivable that the selectivity for amides would be high given that the amino group is a better nucleophile than the hydroxyl function. However, other pathways may take precedence. Herein we report useful methodology for the selective carbonylation of aminophenols with iodoarenes, leading to esters or amides as the principal reaction products.

Initially, 4-aminophenol (1a) was used as the model substrate to optimize the conditions for the reaction (Table 1). The carbonylation of 4-aminophenol (1a) and 4-iodotoluene (2a) was initially carried out in MeCN, using PPh₃ as the ligand and K_2CO_3 as the base, affording ester 3a in high selectivity and in Scheme 1. Conventional Mechanism for the Carbonylation of Aryl Halides

80% isolated yield. The double carbonylation product 5a was obtained in 2% yield, and no amide (4a) was formed (entry 1). Bases and solvents were investigated using PPh₃ as the ligand (see Supporting Information). Using KF gave 3a in 82% yield, with 4a and 5a obtained in only 2% and 4% yields, respectively (entry 2). When the organic base, Et_3N , was used, 3a was the major product (75%) together with a small amount of 4a and 5a (entry 3). Similar results were obtained using DMSO instead of acetonitrile (entry 4). When DMF was used as the solvent, 3a and 4a were obtained in 61% and 23% yields, respectively (entry 5). The yield of 4a increased when DBU was used in MeCN or DMSO (entries 6 and 7). The ester 3a was the major product when Et₃N was used in DMSO (entry 8). The effect of ligands on the carbonylation reaction was then investigated (see Supporting Information). Under conditions favoring ester formation (entry 1), the bidentate ligand 1,3-bis(diphenylphosphino)propane (DPPP) afforded **3a** as the major product in 85% yield (entry 9). When the isobutyl replaced the phenyl group in DPPP, trialkylphosphine ligands 1,3-bis(diisobutylphosphino)propane (DIBPP) gave 3a and 4a in 33% and 50% yields, respectively (entry 10). When DBU was used as the base, the amide 4a was obtained in 81% yield, while 3a was formed in only 8% yield (entry 11). The reactions were also carried out in the absence of ligand under the conditions of entries 9 and 11. K₂CO₃ gave the ester as the major product, and DBU gave the amide 4a as the major product (entries 12 and 13), indicating that base also plays an important role in the selectivity.

Received: August 31, 2014 Published: October 6, 2014

Table 1. Screening of the Reaction Conditions for the Carbonylation of 4-Aminophenol a

^{*a*}Conditions: 0.5 mmol of 4-iodotoluene, 0.6 mmol of 4-aminophenol, 2 mol % Pd(OAc)₂, Pd/P = 1:2, 1 mmol of base, 5 mL of solvent, 200 psi CO, 100 °C, 15 h. ^{*b*}Isolated yield. DPPP = 1,3-bis-(diphenylphosphino)propane. DIBPP = 1,3-bis(diisobutylphosphino)propane.

The selective carbonylation of 4-aminophenols was then applied under conditions A and B (Table 2). After completion, the reaction mixtures were analyzed by GC, and the product ratios were used to indicate the ester/amide selectivity. The results showed that the electronic property of substituents on the iodoarenes had no effect on the selectivity for the ester or amide. Iodoarene with electron-donating (Me and OMe, entries 1-4) or electron-withdrawing (F and CO_2Me , entries 4-8) substituents successfully afforded esters under conditions A or amides under conditions B in high yields and fine selectivities. Steric hindrance on the iodoarene did not affect the selectivity (entries 7-8). When methyl 2-iodobenzoate was reacted under conditions B, subsequent reaction between the amide and methoxycarbonyl substituent occurred to form isoindole-1,3dione derivative 4d in 67% yield (entry 8). Substituents on the 4aminophenol influence the selectivity and yield (entries 9-12). A methyl substituent at the ortho position of the amino group had no effect on the selectivity and yield of ester 3e under A conditions (entry 9), but steric hindrance decreased the selectivity of amide under B conditions (entry 10). The fluoride at the ortho position of the hydroxyl group did not influence the selectivity of the ester (3f) formation under conditions A, but the yield decreased (entry 11).

Our reaction conditions were next applied to the carbonylation of 3-aminophenol derivatives (Table 3). High selectivity for esters and amides was realized using conditions **A** or **B**. 3-Aminophenol reacted with 3-iodoanisole to selectively afford ester 3g (conditions **A**) in 77% yield and amide 4g (conditions **B**) in 84% yield (entries 1 and 2). With the methyl substituent at the 2-position, the selectivity for the amide decreased (entries 3 and 4). Steric hindrance apparently has greater influence on amide, rather than ester formation. When 6-methyl- and 6methoxy-substrates **1f** and **1g** were reacted with 4-iodotoluene (entries 5–8), there was no noticeable influence on the extent of formation of amides under conditions **B**. A significant decrease in

Table 2. Selective Carbonylation of 4-AminophenolDerivatives a

$s = \begin{pmatrix} 0 \\ 1 \\ H_{2N} \\ A \\ 3 \\ R_1 \\ R_1 \\ R_1 \\ R_1 \\ R_1 \\ R_2 \\ R_2 \\ R_2 \\ R_1 \\ R_1$											
entry	1	2		3/4 ^b	Yield (%) ^c						
					3	4	5				
1	1a	2a	Α	>99/1	3a (85)	-	5a (1)				
2	1a	2a	В	8/92	3a (8)	4a (81)	5a (4)				
3	1a	2b	Α	>99/1	3b (88)	-	-				
4	1a	2b	В	16/84	3b (9)	4b (86)	-				
5	1a	2c	Α	>99/1	3c (85)	-	-				
6	1a	2c	В	10/90	3c (4)	4c (85)	-				
7	1a	2d	Α	>99/1	3d (95)	-	-				
8	1a	2d	В	1/99	-	••	-				
9	1b	2a	Α	>99/1	3e (87)	-	-				
10	1b	2a	В	20/80	3e (9)	4e (66)	5e (8)				
11	1c	2e	Α	95/5	3f (55)	-	5f (4)				
12	1c	2e	В	5/95	-	4f (71)	-				

^{*a*}Conditions A: 0.6 mmol of 1, 0.5 mmol of 2, 2 mol % $Pd(OAc)_2$, 2–3 mmol % DPPP, 1 mmol of K_2CO_3 , 5 mL of MeCN, 200 psi CO, 100 °C, 15 h. Conditions B: 0.6 mmol of 1, 0.5 mmol of 2, 2 mol % $Pd(OAc)_2$, 2–3 mmol % DIBPP, 1 mmol of DBU, 5 mL of MeCN, 200 psi CO, 100 °C, 15 h. ^{*b*}GC area ratio of 3/4. ^{*c*}Isolated yield.

Table 3. Selective Carbonylation of 3-Aminophenol Derivatives^a

	H ₂ N 3 2 4 5 R ₁ 1 d R ₁ = 16 R ₁ = 17 R ₁ = 19 R ₁ = 19 R ₁ = 10 R ₁ =	CH B CH CH CH CH CH CH CH CH CH CH	$CO \frac{Conditions A: Pd(OAc)_{2}(DPPP}{Conditions B: Pd(OAc)_{2}(DIBPP} + \begin{pmatrix} A_{R} \\ R \end{pmatrix} + \begin{pmatrix} A_{R} \\ C \end{pmatrix} + \begin{pmatrix} A_$						
					yield $(\%)^c$				
entry	1	2		$3/4^b$	3	4	5		
1	1d	2f	Α	>99/1	3g (77)				
2	1d	2f	В	4/96		4g (84)			
3	1e	2b	Α	99/1	3h (92)				
4	1e	2b	В	11/89	3h (6)	4h (75)			
5	1f	2a	Α	97/3	3i (70)		5i (10)		
6	1f	2a	В	3/97		4i (85)			
7	1g	2a	Α	73/27	3j (41)	4j (10)	5j (10)		
8	1g	2a	В	1/99		4j (80)			
9	1h	2e	Α	97/3	3k (95)				
10	1h	2e	В	12/88	3k (8)	4k (73)			

^{*a*}Conditions A: 0.6 mmol of 1, 0.5 mmol of 2, 2 mol % $Pd(OAc)_2$, 2– 3 mmol % DPPP, 1 mmol of K_2CO_3 , 5 mL of MeCN, 200 psi CO, 100 °C, 15 h. Conditions B: 0.6 mmol of 1, 0.5 mmol of 2, 2 mol % $Pd(OAc)_2$, 2–3 mmol % DIBPP, 1 mmol of DBU, 5 mL of MeCN, 200 psi CO, 100 °C, 15 h. ^{*b*}GC area ratio of 3/4. ^{*c*}Isolated yield.

the selectivity for ester under conditions **A** was observed (entries 5 and 7), and **2a** was not consumed, indicating that the electronic effect was greater than the steric effect, and the electron-donating

substituent disfavored the formation of the ester under conditions **A**. Substrate **1h** with the fluoride substituent on the para position of the hydroxyl group (entry 9) afforded the ester under conditions **A** in high yield and high selectivity, demonstrating that the electronic-withdrawing group favors ester formation.

When 2-aminophenol (1i) was carbonylated with 4iodotoluene, only the amide (4l) was obtained in high yield under A or B conditions (see Supporting Information). The coordination at both nitrogen and oxygen might lead to this result.¹⁰

According to the conventional mechanism outlined in Scheme 1, the amide should be favored over the ester because the amino group is a better nucleophile than the hydroxyl group. However, in our case, the selectivity was dependent on the ligand and the base. Both are important in the process (Table 1, entries 9–13). To determine the selectivity, *p*-toluoyl chloride (6) was reacted with 4-aminophenol in MeCN using K_2CO_3 and DBU as the base, respectively (see Supporting Information). Surprisingly, the selectivity of 3a/4a was the reverse of the palladium-catalyzed carbonylation of 4-aminophenol.

We then carried out two reactions using a mixture of 4methylphenol (7) and 4-methylaniline (8) instead of 4aminophenol under conditions A and B, respectively (see Supporting Information). The selectivity for ester (9) or amide (10) was consistent with the result of 4-aminophenol. Buchwald and co-workers observed that the ester was formed as an intermediate in the palladium-catalyzed aminocarbonylation of aryl chlorides using sodium phenoxide as the base.¹¹ However, in our work, we used excess aminophenol and base, and ester 3 did not convert to the amide even using 3 equiv of aminophenol. Prolonging the reaction time or raising the reaction temperature to 120 °C did not alter the selectivity, suggesting a different mechanism here. Lei and co-workers reported a base-induced mechanistic variation for the palladium-catalyzed alkoxycarbo-nylation of aryl iodides.¹² Sodium alkoxide was used instead of tertiary amines in their work, affording high yields of ester while tertiary amine gave low product yields. They proposed that transmetalation with sodium alkoxide led to the key intermediate. The ligand effect was not mentioned in their work.

Treatment of aroyl chlorides with Pd(0) catalysts can form ArCOPdCl.¹³ Unfortunately, preparation of the complex ArCOPdCl bearing DPPP or DIBPP was fruitless. We prepared $(p-TolCO)Pd(PPh_3)_2Cl$ from $Pd(PPh_3)_4$ and p-toluoyl chloride. Then (p-TolCO)Pd(PPh₃)₂Cl was used to react with 4aminophenol quantitatively or to catalyze the carbonylation using K₂CO₃ or DBU as base (see Supporting Information), affording ester or amide selectively consistent to the palladiumcatalyzed carbonylation of 4-aminophenol. The results indicate that ArCOPdX may be an intermediate, and coordination of NH₂ or OH to the palladium intermediate occurred in the process, affording products after reductive elimination. On the basis of the experimental results and literature reports, it is reasonable to conclude that the nature of ligand is key to the selectivity.¹⁴ An electron-rich ligand favors the coordination of the amino group rather than the hydroxyl group. The base assists the selectivity. Inorganic base can react with phenol to form phenoxide, which facilitates transmetalation with the palladium intermediate to form ester.

A secondary aminophenol and an aliphatic aminoalcohol were subjected to the carbonylation reaction with 4-iodotoluene (see Supporting Information). We were pleased to observe that 4isopropylaminophenol (1j) afforded the ester (3m) in 93% isolated yield under **A** conditions. Ester **3m** was also the major product (70% yield) under **B** conditions, indicating the potential importance of the steric factors for this reaction. Also, the coordination of nitrogen to the palladium intermediate may be critical to the catalytic process. 3-Aminopropanol gave the amide (**4n**) in 75% yield under **B** conditions, but poor selectivity resulted using **A** conditions. The method was also applied to the carbonylation of 4-methylphenol with 4-iodoaniline and 4methylaniline with 4-iodophenol. The ester **13** was obtained in 75% yield under **A** conditions, and the amide **16** was obtained in 61% yield under **B** conditions.

In conclusion, the palladium-catalyzed selective carbonylation of 3- and 4-aminophenols was realized, affording esters in high yields and selectivities using 1,3-bis(diphenylphosphino)propane as the ligand and K_2CO_3 as the base, while producing amides in high yields and selectivities using 1,3-bis-(diisobutylphosphino)propane as the ligand and DBU as the base. 2-Aminophenol only gave the amide in high yields under both conditions. These results demonstrate that the nature of the phosphine ligand is key to the selectivity of the catalytic reactions. These chemoselective reactions have considerable potential for organic synthesis.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* howard.alper@uottawa.ca

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to Cytec Canada and to the Natural Sciences and Engineering Research Council of Canada for support of this research.

REFERENCES

(1) (a) Kollár, L. Modern Carbonylation Methods; Wiley-VCH Verlag: Weinheim, Germany, 2008. (b) Beller, M. Catalytic Carbonylation Reactions; Springer: Berlin, Germany, 2006. (c) Gadge, S. T.; Bhanage, B. M. RSC Adv. **2014**, 4, 10367. (d) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res. **2014**, 47, 1563. (e) Wu, X.-F.; Neumann, H.; Beller, M. ChemCatChem **2013**, 6, 229. (f) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. **2013**, 113, 1. (g) Wu, X.-F.; Neumann, H.; Beller, M. ChemCatChem **2012**, 4, 447. (h) El Ali, B.; Alper, H. Synlett **2000**, 161. (i) Liu, Q.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. **2011**, 50, 10788.

(2) For selected references, see: (a) Mulzer, M.; Tiegs, B. J.; Wang, Y. P.; Coates, G. W.; O'Doherty, G. A. J. Am. Chem. Soc. 2014, 136, 10814.
(b) Li, S. H.; Chen, G.; Feng, C.-G.; Gong, W.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 5267. (c) Volla, C. M. R.; Bäckvall, J.-E. Org. Lett. 2014, 16, 4174. (d) Fang, X.; Li, H.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 9030. (e) Li, W.; Liu, C.; Zhang, H.; Ye, K.; Zhang, G.; Zhang, W.; Duan, Z.; You, S.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 2443. (f) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Angew. Chem., Int. Ed. 2013, 52, 14196.

(3) For selected references, see: (a) Bai, Y.; Davis, D. C.; Dai, M. Angew. Chem., Int. Ed. 2014, 53, 6519. (b) Ferguson, J.; Zeng, F. Z.; Alwis, N.; Alper, H. Org. Lett. 2013, 15, 1998. (c) Kippo, T.; Hamaoka, K.; Ryu, I. J. Am. Chem. Soc. 2013, 135, 632. (d) Takahashi, K.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 18746.

Journal of the American Chemical Society

(e) Chikkali, S. H.; Bellini, R.; de Bruin, B.; van der Vlugt, J. I.; Reek, J. N.
H. J. Am. Chem. Soc. 2012, 134, 6607. (f) Fleischer, I.; Dyballa, K. M.;
Jennerjahn, R.; Jackstell, R.; Franke, R.; Spannenberg, A.; Beller, M.
Angew. Chem., Int. Ed. 2013, 52, 2949. (g) Wang, L.; Wang, Y.; Liu, C.;
Lei, A. Angew. Chem., Int. Ed. 2014, 53, 5657. (h) Zhang, H.; Shi, R.;
Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542.

(4) (a) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114. (b) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986. (c) Kiss, G. Chem. Rev. 2001, 101, 3435. (d) Driller, K. M.; Prateeptongkum, S.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 537. (e) Wu, X.-F.; Fang, X. J.; Wu, L. P.; Jackstell, R.; Neumann, H.; Beller, M. Acc. Chem. Res. 2014, 47, 104. (f) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675. (g) Chen, J.; Natte, K.; Spannenberg, A.; Neumann, H.; Langer, P.; Beller, M.; Wu, X.-F. Angew. Chem., Int. Ed. 2014, 53, 757.

(Š) (a) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
(b) Cupido, T.; Tulla-Puche, J.; Spengler, J.; Albericio, F. Curr. Opin. Drug Discovery Dev. 2007, 10, 768. (c) Locatelli, C.; Filippin-Monteiro, F. B.; Creczynski-Pasa, T. B. Eur. J. Med. Chem. 2013, 60, 233.
(d) Fonseca, A. C.; Gil, M. H.; Simoes, P. N. Prog. Polym. Sci. 2014, 39, 1291.

(6) (a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606. (b) Montalbetti, C.; Falque, V. Tetrahedron 2005, 61, 10827.

(7) (a) Friis, S. D.; Skrydstrup, T.; Buchwald, S. L. Org. Lett. 2014, 16, 4296. (b) Skogh, A.; Fransson, R.; Sköld, C.; Larhed, M.; Sandström, A. J. Org. Chem. 2013, 78, 12251. (c) Watson, D. A.; Fan, X. X.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7096. (d) Schranck, J.; Tlili, A.; Neumann, H.; Alsabeh, P. G.; Stradiotto, M.; Beller, M. Chem.—Eur. J. 2012, 18, 15592. (e) Chen, J.; Natte, K.; Spannenberg, A.; Neumann, H.; Langer, P.; Beller, M.; Wu, X.-F. Angew. Chem., Int. Ed. 2014, 53, 7579.

(8) (a) Barnard, C. F. J. Organometallics 2008, 27, 5402. (b) Barnard, C. F. J. Org. Process Res. Dev. 2008, 12, 566.

(9) (a) Niemann, G. J.; Liem, J.; van der Kerk-van Hoof, A.; Niessen, W. M. A. *Phytochemistry* **1992**, *31*, 3761. (b) Caldarelli, A.; Minazzi, P.; Canonico, P. L.; Genazzani, A. A.; Giovenzana, G. B. *J. Enzyme Inhib. Med. Chem.* **2013**, *28*, 148. (c) Marrone, T. J.; Luty, B. A.; Rose, P. W. Perspect. Drug Discovery **2000**, *20*, 209.

(10) Perry, R. J.; Wilson, B. D.; Miller, R. J. J. Org. Chem. 1992, 57, 2883.

(11) Martinelli, J. R.; Clark, T. P.; Watson, D. A.; Munday, R. H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 8460.

(12) Hu, Y. H.; Liu, J.; Lü, Z. X.; Luo, X. C.; Zhang, H.; Lan, Y.; Lei, A. W. J. Am. Chem. Soc. **2010**, *132*, 3153.

(13) (a) Quesnel, J. S.; Arndtsen, B. A. J. Am. Chem. Soc. 2013, 135, 16841. (b) Korsager, S.; Taaning, R. H.; Skrydstrup, T. J. Am. Chem. Soc. 2013, 135, 2891. (c) Fitton, P.; Johnson, M. P.; McKean, J. E. Chem. Commun. 1968, 6.

(14) (a) Maiti, D.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 17423.
(b) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205. (c) Shafir, A.; Lichtor, P. A.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3490.